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Abstract—The purpose of this paper is to understand phase tran-
sition in noncooperative dynamic games with a large number of
agents. Applications are found in neuroscience, biology, and eco-
nomics, as well as traditional engineering applications. The focus
of analysis is a variation of the large population linear quadratic
Gaussian (LQG) model of Huang et al. 2007, comprised here of a
controlled -dimensional stochastic differential equation model,
coupled only through a cost function. The states are interpreted
as phase angles for a collection of heterogeneous oscillators, and in
this way the model may be regarded as an extension of the classical
coupled oscillator model of Kuramoto. A deterministic PDE model
is proposed, which is shown to approximate the stochastic system
as the population size approaches infinity. Key to the analysis of
the PDE model is the existence of a particular Nash equilibrium
in which the agents ‘opt out’ of the game, setting their controls to
zero, resulting in the ‘incoherence’ equilibrium. Methods from dy-
namical systems theory are used in a bifurcation analysis, based
on a linearization of the partial differential equation (PDE) model
about the incoherence equilibrium. A critical value of the control
cost parameter is identified: above this value, the oscillators are in-
coherent; and below this value (when control is sufficiently cheap)
the oscillators synchronize. These conclusions are illustrated with
results from numerical experiments.

Index Terms—Mean-field game, Nash equilibrium, nonlinear
systems, phase transition, stochastic control, synchronization.

I. INTRODUCTION

T HE dynamics of a large population of coupled hetero-
geneous nonlinear systems is of interest in a number of

applications, including neuroscience, communication networks,
power systems, and economic markets. Game theory provides
a powerful set of tools for analysis and design of strategic be-
havior in controlled multi-agent systems. In economics, for ex-
ample, game-theoretic techniques provide a foundation for an-
alyzing the behavior of rational agents in markets. In practice,
a fundamental problem is that controlled multi-agent systems
can exhibit phase transitions with often undesirable outcomes.
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In economics, an example of this is the so-called rational ir-
rationality: “behavior that, on the individual level, is perfectly
reasonable but that, when aggregated in the marketplace, pro-
duces calamity [3].”

A prototypical example of multi-agent heterogeneous non-
linear system that exhibits phase transition is the coupled oscil-
lator model of Kuramoto [4]. The model comprises of oscil-
lators, with the th oscillator’s dynamics given by

(1)

where is the phase of the th-oscillator at time , is
its natural frequency, is the standard Wiener process,

models the influence of the th-oscil-
lator from the population of oscillators, and is the coupling
parameter. The frequency is drawn from a distribution
with support on . The parameters and
are used to model the heterogeneity and the strength of network
coupling, respectively.

The dynamics of the Kuramoto model can be visualized using
a bifurcation diagram in the plane, which in particular
illustrates the emergence of a phase transition. The stability
boundary shown on the left-hand side of Fig. 1
provides an illustration of the phase transition: The oscillators
behave incoherently for , and synchronize for

. That is, the oscillators synchronize if the coupling is suf-
ficiently large. In the former incoherent setting, the oscillators
rotate close to their own natural frequency and hence the tra-
jectory is approximately independent of the population. In
the synchronized setting each oscillator rotates with a common
frequency.

The phase transition is important in a number of applications.
For example, in thalamocortical circuits in the brain, transition
to the synchronized state is associated with diseased brain states
such as epilepsy [5].

The objective of this paper is to model and interpret the phase
transition from the perspective of noncooperative game theory.
We define the game formally:

Consider a set of oscillators. The model for the th oscil-
lator is given by

where is the control input. In neuroscience applications,
an oscillator serves as a reduced order model of a single neuron:

is the phase variable and models the effect
of stimulus (current) [6]. It is noted that the state space for the
th oscillator is a circle, and denoted as .

Suppose the th oscillator minimizes its own performance
objective:

(2)
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Fig. 1. Bifurcation diagrams. The Kuramoto model (1) with � �� � ���� (left), and the coupled model considered in this paper with � �� � ���� (right).

where , is a cost function, ,
and models the control penalty. The form of the function and
the value of are assumed to be common to the entire popula-
tion. A Nash equilibrium in control policies is given by
such that minimizes for .

In general, establishing the existence and uniqueness of Nash
equilibrium for large is a challenging problem. In this paper,
following the Nash Certainty Equivalence (NCE) methodology
first developed in [2], we investigate a distributed control law
wherein the th oscillator optimizes by using local information
consisting of i) its own state and ii) the mass-influence of
the population. The idea is that in the limit of large population
size (as ), the population affects the th oscillator in a
nearly deterministic fashion. The distributed control law is ob-
tained by considering a problem where each oscillator optimizes
with respect to this deterministic (but not a priori known) mass
influence.

Three types of analyses are presented in this paper. We first
examine the infinite-oscillator limit, and subsequently investi-
gate the implications for the finite-oscillator model:

1) The infinite oscillator limit. A limiting model is con-
structed consisting of two partial differential equations
(PDEs):

i) A Hamilton–Jacobi–Bellman (HJB) equation
(14a) that describes the solution of minimizing
(2) under the assumption of a known deterministic
mass influence.

ii) A Fokker–Planck–Kolmogorov (FPK) equation
(14b) that describes the evolution of the popula-
tion density with optimal control input obtained
from the solution of i).

The two PDEs are coupled via the mass influence term
(14c). It arises as a (spatially) averaged cost function,
where the average is based on the solution of ii). The
averaged cost function is used in the HJB equation in i),
whose solution defines the distributed control law.

2) -Nash equilibrium for finite . Following the method-
ology outlined in [2], we establish that the distributed con-
trol law is an -Nash equilibrium for the stochastic dynamic
game with a finite large number of oscillators .
This implies that any unilateral deviation by an individual
oscillator can at best improve the performance by a small

amount when the population size is
large.
The final analysis is grounded in the large population limit.

3) Transition from incoherence to synchrony. A bifurcation
diagram is obtained in the plane for the infinite limit
model. The plot shown on the right in Fig. 1 depicts a
phase transition: for , the oscillators are inco-
herent, and for the oscillators synchronize. That is,

the oscillators synchronize when the control is sufficiently
cheap.

The bifurcation diagram in Fig. 1 is obtained via spectral anal-
ysis of the linearization taken about the incoherent solution. The
analysis is used to establish linear asymptotic stability of the in-
coherence solution for . For , the incoherence
solution loses stability to a traveling wave solution, interpreted
here as the synchrony solution. These solutions are obtained
here using a Lyapunov–Schmidt based perturbation method for
the homogeneous population, and using a numerical wave form
relaxation algorithm for the general heterogeneous case. For the
numerical solutions, a brief comparison to the Kuramoto oscil-
lators is also provided.

The overall approach of this paper follows the NCE method-
ology introduced in the seminal work of Huang, Caines, and
Malhamé [2], [7], [8]. In [2], a solution of a cost-coupled LQG
game is described for a population comprising of heterogeneous
linear agents with Gaussian noise. Each agent seeks to minimize
its own infinite-horizon discounted cost. The average cost exten-
sion of this problem appears in Li and Zhang [9].

There has also been a parallel development of closely related
concepts, referred to as mean-field games, beginning with the
work of Lasry and Lions [10]. In Gueant [11], a reference case
for mean-field game models is discussed: agents have a utility
flow that is a function of the population distribution. Numerical
approaches to obtain solution of the mean-field game models
appears in Achdou and Dolcetta [12].

In the economics literature, mean-field approaches for games
with large number of players has a rich history; cf. [13] for an
early reference. More recently, the notion of oblivious equilib-
rium was introduced by Weintraub et al. [14], [15] as a means
of approximating a Markov perfect equilibrium (MPE) for eco-
nomic models. Related methods to construct approximate so-
lutions to large-scale stochastic games, where state of an indi-
vidual agent evolves as a discrete-time Markov process, can be
found in [16], [17].

The paper is organized as follows. A description of the SDE
and PDE models is contained in Section II, and Section III con-
tains analysis of the game for a finite number of oscillators.
Bifurcation analysis appears in Section IV, which is illustrated
with results from numerical experiments in Section V. Conclu-
sions are contained in Section VI.

II. MEAN-FIELD APPROXIMATION

We begin with a description of the coupled oscillator model,
associated optimal control problems, and the proposed infinite-
limit approximation.

A. Finite Oscillator Model

We consider a population of oscillators competing in a
noncooperative game as defined in the Introduction [see (2)].
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The dynamics of the th oscillator are described by the stochastic
differential equation

(3)

where is the phase of the th oscillator at time
, is the control input, and are mutually independent

standard Wiener processes. The standard deviation is inde-
pendent of . The SDE model requires frequencies and initial
conditions , that are chosen independently according to
a given distribution:

Assumption (A1): For each , is independent
and identically distributed (i.i.d.), independent of , with
common marginal distribution .

The frequency is a constant independent of time—It is as-
sumed that at time , the scalars are chosen inde-
pendently according to a fixed distribution with density , which
is supported on an interval of the form where

is assumed to be a small constant. For a homogeneous
population and , the Dirac delta func-
tion at .

In the numerical examples described in Section V, the density
is taken to be uniform, namely for .

We seek a control solution that is decentralized and of the
following form: For each and , the input depends only on

, and perhaps some aggregate information, such
as the mean value of . This amounts to a dynamic
game, whose exact solution is infeasible for large .

Instead we construct an approximation of the form described
in [2] and [18]. This approximation is based on an infinite-pop-
ulation limit similar to those introduced in this prior work and
others (e.g., [19]). The approximation is based on the following
sequence of steps:

1) We construct a density function that is intended to
approximate the probability density function for the
individual oscillators in steady-state. For any and any

, the density is intended to approximate
the probability density of the random variable ,
evolving according to the stochastic differential equa-
tion (3).

2) We obtain an approximation for the cost function . Mo-
tivated by the separable nature of the control used in the
coupled oscillator models [e.g., (1)], we make the fol-
lowing assumption:

Assumption (A2):
The cost function appearing in (2) is separable, as shown
as follows:

(4)

with a non-negative integrable function on .
If is large, the sum in (4) is expected to be nearly de-
terministic when the frequencies are independently
sampled according to the density . The law of large num-
bers (LLN) suggests the approximation of by

(5)

3) For the scalar model (3) with cost depending only
on , the game reduces to independent optimal con-
trol problems. The individual agents are oblivious to the
state of the entire system and make their control decisions
based only on local state variables.
We show in this paper that this approximation is justified
in the limit of large population size.

In the following subsection we develop the “oblivious” solu-
tion described in 3). We then turn to the PDE approximation in
1) that defines the approximate cost (5) in 2).

B. Optimal Control of a Single Oscillator

Suppose that a cost function is given for the single-oscillator
model: it is possibly time-dependent, and a continuous function
of its arguments, of the form

The average cost is defined as the limit supremum

(6)

The goal is to minimize over all admissible controls. In the
context here this means that is adapted to the filtration

. We let denote the minimal cost.
A Markov policy is simply state-feedback, of the form

. If the feedback law is , then
the evolution of the density is defined by the
Fokker–Planck–Kolmogorov (FPK) equation

(7)

where and denote the partial derivative with respect to
and , respectively, and denotes the second derivative with
respect to .

To characterize the optimal input as state feedback we
turn to the associated average-cost optimality equations (or HJB
equations) given by

(8)

The function is called the relative value function,
is the minimal average cost defined above, and denotes the
controlled generator, defined for functions via

Provided a solution to (8) exists, the minimizer in this equa-
tion defines a state feedback control law that is optimal. Because
the cost is quadratic in , and the dynamics linear in , the op-
timal feedback law is expressed as the function of

(9)

Substituting into (8) gives the nonlinear PDE

(10)
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Under Assumption (A3), the optimal control (9) is realized as
continuous and bounded state feedback.

Assumption (A3): There is a bounded, solution to (10)
whose first derivatives are uniformly bounded:

(11)

The next result establishes optimality of the Markov policy
(9), even in the general time-dependent setting described here.
The proof appears in Appendix VII-A.

Proposition 2.1: Consider the single oscillator optimal con-
trol problem (6) for the th-oscillator. Suppose that Assumption
(A3) holds. Then, the Markov policy (9) is average cost optimal,
with average cost , independent of the initial condition .

Justification of Assumption A3 is beyond the scope of this
paper, but we can give conditions under which a slight relax-
ation is valid. Suppose that the cost function is periodic, with
period (if , then is independent of time).
Denote the space–time process by , where
the second variable is simply the time variable, modulo the pe-
riod . The space–time process may be viewed as a controlled
Markov process on the product space , so that cost
is only a function of this state and the control . Following stan-
dard arguments [20], it follows that an optimal policy is defined
as a stationary Markov policy. That is, .
For a continuous feedback law of this form the controlled dif-
fusion is hypoelliptic, for which there is a rich ergodic theory
(see Prop. 3.1 below). In particular, because of the compact state
space, the average cost (6) exists as a limit and is independent
of the initial state [21]. Moreover, for each there exists a solu-
tion to Poisson’s equation for the optimal policy [22], and this
solves (8) with interpreted as the extended generator [22],
rather than a differential operator.

In contrast to the time-average problem (6) considered here,
the existence theory for the discounted cost problem is relatively
easier and appears in [2] for the linear quadratic case.

C. PDE Model

We now provide a complete description of the PDE model
that is intended to approximate the stochastic model for large

. This model is based on the cost function introduced
in the preceding section. A relative value function and
a density for the infinite population model are defined
by differential equations identical to those considered for the
single oscillator model.

The relative value function is defined as the solution to an
HJB equation, exactly as in (8):

The associated feedback control law is then defined as in (9) by

(12)

Given the feedback control law (12), the FPK equation that de-
fines the evolution of the normalized density is given by the
analog of (7)

The average cost is then defined as the function of

(13)
The only difference thus far is notational: is the value

function for with a single frequency , and is
the value function for a continuum of oscillators, distinguished
by their natural frequency . Such is the case because we have
assumed is a known deterministic function that is further-
more consistent across the population.

All that remains is to specify in a self-consistent
manner. The consistency enforced here is inspired by the
approximation given in (5). The two PDEs are coupled through
this integral that defines the relationship between the cost and
the density :

In summary, the PDE model is given by

(14a)

(14b)

(14c)

In the remainder of this paper, we investigate solutions
of this coupled PDE. Under the assump-

tion of periodicity, we restrict to two cases: the equilibrium
solution in which the cost function, the relative value function,
and the density are independent of time, or the periodic case
in which , , and are periodic in time,
with period . The equilibrium and periodic solutions are
considered for the following reasons:

1) These solutions define approximate Nash equilibrium of
the game with a finite large number of oscillators. This is
discussed in Section III.

2) For certain values of the parameter , these solutions rep-
resent the steady-state solutions of the PDE model (see
Sections IV, V).

3) These solutions potentially represent the incoherence and
synchrony solutions described in the coupled oscillators
literature [19], [23] (see Figs. 1 and 5).

D. Incoherence

The system of (14a)–(14c) may have multiple solutions. Sup-
pose that the cost introduced in (4) is of the form

. In this case we single out the incoherence solution
defined by

The nomenclature “incoherence solution” is inspired from the
coupled (Kuramoto) oscillators literature, where it is used to
describe the solution with angles (for the population)
uniformly distributed on the circle [19].
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The control law (12) sets . The cost defined in (5)
is constant in this solution.

Consider the special case

For the incoherence solution

which coincides with the average cost for
all . This value is approximately consistent with the
finite- model. When each control is set to zero we obtain

for each , which results in average
cost independent of ,

We return to this example in the bifurcation analysis of
Section IV. There is a tradeoff between reducing the cost
associated with , and reducing the cost of control. These
competing costs suggest that a qualitative change in optimal
control may arise when the parameter varies from to 0.

Remark 1: The incoherence solution is a solution of the cou-
pled PDE model (14a)–(14c) obtained here without an explicit
requirement of a particular initial condition. One may wonder
whether it represents also a steady-state for a certain initial value
problem? This is discussed in Sections IV-A–IV-C with the aid
of a linear analysis.

III. -NASH EQUILIBRIUM

In this section, we assume that we have a solution
of the PDE model described in

Section II-C. We show that in the stochastic model (3) with
, the resulting control solution given in (12) defines

an almost sure -Nash equilibrium, with as . The
concept of almost sure -Nash equilibrium has been proposed
in [9].

A. Oblivious Control

Suppose that , and that each oscillator uses the feed-
back control law (12) as follows:

(15)

We refer to (15) as the oblivious control [18].
Here we also recall that the initial conditions are chosen

independently: is i.i.d., independent of , with
common marginal distribution
[see Assumption (A1)].

For a periodic solution, the space-time process
with control (15) is a hypoelliptic diffusion. The-

orem 3.2 of [21] implies that the process is ergodic in a strong
sense:

Proposition 3.1: Suppose that the control law (15) is peri-
odic, with period . For each value of the skeleton
chain satisfies Doeblin’s condition,

and hence possesses a unique invariant measure with den-
sity , for any :

Moreover, the Markov process satisfies the following ergodic
theorems:

1) The skeleton chain is uniformly ergodic: there exists
and such that for any measurable set

, each initial , and each :

2) The continuous-time Markov process is positive
Harris recurrent with unique invariant measure , de-
fined by the time-average of those for the skeleton
chains:

(16)
3) The LLN holds for each bounded and measurable func-

tion :

B. Optimal Control of a Single Oscillator Revisited

Suppose each oscillator except for the th oscillator applies
the oblivious feedback law (15). In this case, the th oscillator
faces an ordinary stochastic control problem:

(17)

where the notation is used to denote angle of the th os-
cillator at time with oblivious control . The goal is to

minimize over all admissible controls. In the context
here this means that is adapted to the filtration

.
The state process is -dimensional, and

whose controlled generator is subject to the fixed policies
used by the other oscillators. It is defined for functions via

We state without proof the following standard proposition for
the solution of this problem (see, e.g., [20]):

Proposition 3.2: Suppose that is fixed, and
the oblivious policy (15) is fixed for each . Then:

1) The optimal control problem (17) for the th oscillator is
characterized by the controlled diffusion with state space

.
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2) The average-cost optimality equation is given by

(18)
where is the relative value function.

3) Suppose that there exists a solution to (18), with
bounded derivatives as in (11) of Assumption (A3).
Then, the minimal average cost over all admis-
sible controls coincides with the minimum
over periodic state feedback policies of the form

, where the function
is continuous.

We henceforth restrict to feedback laws of the periodic state-
feedback form as in 3). Under this condition we can extend Prop.
3.1 to the -dimensional state process:

Proposition 3.3: For fixed , suppose that each oscillator ex-
cept for oscillator applies the oblivious feedback law (15),
and that oscillator applies a periodic state feedback solution
of the form , where the function

is continuous. Then, for each value of , the
-dimensional skeleton chain satisfies

Doeblin’s condition, and is uniformly ergodic.

C. Almost Sure -Nash Property of Oblivious Control
The goal is to show that the oblivious control law (15) is ap-

proximately optimal for the th oscillator provided all other os-
cillators also use the oblivious control, and is large.

The key is that for large , the finite sum in (17) can be ap-
proximated by the deterministic function that is defined
using the integral (14c) in the PDE limit. The nature of approx-
imation is made precise in the following Proposition 3.4 whose
proof, given in Appendix VII-B, is based on the LLN.

Proposition 3.4: Suppose that is fixed, and
the oblivious policy (15) is fixed for each . Suppose fur-
thermore that Assumption (A1) holds, and that the th oscil-
lator uses a time-periodic feedback control of the form

where the function is con-
tinuous. Then, there is a sequence of random variables
such that,

where as a.s., and also in mean square at rate
:

(19)

We can now establish the main result of this section. Recall
first that the oblivious control law is designed to be optimal with
respect to the deterministic function , i.e.,

(20)

The proof of the following theorem appears in Appendix VII-C
(see also [2]).

Theorem 3.5: Suppose that Assumption (A1) holds. For large
, the oblivious control is an -Nash equilibrium for (2):

For any admissible control :

where as a.s., and in mean square with rate
as in (19).

IV. BIFURCATION ANALYSIS OF PDES

In the remainder of the paper we present a finer analysis of
the coupled equations (14a)–(14c). The following assumption is
imposed on the cost:

Assumption (A4): The cost function introduced in (4) is
assumed to be an integrable function that is:

1) spatially invariant, i.e., ;
2) non-negative, i.e., ;
3) even, i.e., .

We write the Fourier series of the cost function as

(21)

For the numerical example, we consider
. In this case, , ,

and for
Our main goal in this and the following section is to estab-

lish a transition from incoherence to synchrony as the control
penalty parameter is decreased beyond a critical value. Before
presenting the details of the analysis, we first provide a roadmap
of what is to follow:

1) Solutions to the (14a)–(14c) are investigated using the
method of bifurcation theory; the parameter is used as
the bifurcation parameter.

2) We single out one solution obtained in Section II-D: The
incoherence solution. We denote this solution by

. The local stability of the incoherence so-
lution is investigated via analysis of a linearization about

(Section IV-A). The spectral analysis of the lineariza-
tion is also used to obtain the bifurcation point as a critical
value of where the incoherence solution loses
stability (Sections IV-B, IV-C).

3) Although the linear analysis is described for the general
heterogeneous case, a rigorous bifurcation result for the
nonlinear problem is proved only for the homogeneous
case (where ). In the latter case, we show
the existence of a small amplitude traveling wave solution
via the method of Lyapunov–Schmidt (Section IV-D). A
perturbation formula is given for this special case.

4) For the heterogeneous case, the solution of the PDE for a
specific cost function
is obtained numerically by using an algorithm which can
be found in [1]. Numerical results described in Section V
show that the incoherent solution is a limiting fixed-point
of the algorithm when . Below the critical value
of , the incoherent solution is no longer stable. The nu-
merical algorithm yields a periodic traveling wave solution
that is interpreted as the synchrony solution.

A. Linear PDEs

The linearization of the (14a)–(14c) is taken about the equi-
librium incoherence solution . A perturbation of
this solution is denoted , where

for all and . Since
is a probability density, the perturbation satis-

fies the normalization condition for all
. Since the relative value function is only defined to a con-

stant, we also impose a similar normalization condition for :
for all .
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When is small, its evolution is approximated by the linear
equation

(22)

where

and

The local analysis entails well-posedness (existence, unique-
ness) and stability with respect to an infinitesimal initial pertur-
bation of the population density

(23)

where .
The analysis requires the introduction of a Hilbert space,

taken here to be , where is a subspace
of . The space is defined
with respect to the measure on the product space

. For any complex-valued function on
we denote

The Hilbert space is defined to be the set of functions for
which the integral is finite, and for all

. We denote .
We refer to the problem (22), (23) as the linear initial

value problem. The problem is well-posed if a unique solution
exists in for any initial perturbation

. Along with well-posedness, we are
interested in local stability of the incoherence solution:

Definition 1: Consider the incoherence solution
of the coupled nonlinear PDE (14a)–(14c). The inco-

herence solution is linearly asymptotically stable
if a solution of the linear initial value problem (22),
(23) with initial perturbation exists
in , and satisfies as .

For the stability analysis of the linear initial value problem
(22), (23), it is useful to first deduce the spectra. Since the func-
tions are -periodic, Fourier coordinates are used to ob-
tain a simpler diagonal representation of the linear operator .

Key to the representation is the Fourier series expansion with
respect to :

(24)

where c.c denotes the complex conjugate. We also require ex-
pansions of the initial condition

, and the perturbation of the cost function

(25)

Using (24), (25) yields a diagonal decomposition of the linear
operator

where each acts on the pair . The individual op-
erators have the explicit form

(26)

and , .
The Fourier coordinate functions do not depend upon

coordinate . For such functions, we introduce the subspace
: It is defined to be the set of complex-valued func-

tion on such that the norm

is finite.

B. Spectrum

We say that is in the spectrum of if the inverse
does not exist as a bounded linear operator on .

The associated eigenvector problem is given by

The spectrum of is given by the union of spectrum of ,
. In general, the spectrum includes both con-

tinuous and discrete parts. In Appendix VII-D we establish the
following characterization:

Theorem 4.1: For the linear operator ,
1) The continuous spectrum equals the union of sets

, where

for all

2) The discrete spectrum equals the union of sets
.

We have the following two cases:
1) If , the set is empty;
2) if :

The points in are in one-one correspondence with the
frequencies in the support of the distribution . That is, for
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Fig. 2. Spectrum as a function of �. (a) The continuous spectrum for � � �, along with the two eigenvalue paths as � decreases. (b) The real and imaginary
parts of the two eigenvalue paths as � decreases. (c) � ��� as a function of � .

each , the point lies in the
continuous spectrum. On the complex plane, comprises of
two line segments, one in the left half-plane and the other in the
right half-plane. The main thing to note is that the continuous
spectrum does not change with the value of and is moreover
bounded away from the imaginary axis for .
So, the focus of the analysis and the numerical study that fol-
lows is on the discrete spectrum. As implied by Theorem 4.1,
the discrete spectrum is obtained by solving the characteristic
equation:

for such that . For negative values of , the
eigenvalues are simply the complex conjugate.

Example 1: Consider .
In this case and there is only one characteristic
equation to consider

(27)

This equation was solved numerically to obtain a path of eigen-
values as a function of . In these calculations, we fixed

and a uniform distribution on .
Fig. 2(a) depicts the resulting locus of eigenvalues obtained

with . For there are a pair of complex eigen-
values at . As the parameter decreases, these
eigenvalues move continuously towards the imaginary axis. The
critical value is defined as the value of at which these
two eigenvalue paths collide on the imaginary axis, resulting
in an eigenvalue pair of multiplicity 2. The eigenvalues split as

is decreased further, and remain on the imaginary axis for
. The real and the imaginary part of the two eigenvalue

paths originating at are depicted in Fig. 2(b). These
eigenvalues also have their complex conjugate counterparts (for

) that are not depicted for the sake of clarity.
In (a) and (b), the value of is fixed at 0.05. The critical value
is a function of the parameter . Fig. 2(c) depicts a plot of

as a function of . For the uniform distribution , the
critical point also has an analytical expression:

if ,
if .

(28)

The formula (28) is consistent with the expression for crit-
ical coupling for the Kuramoto
model in [19]. Note here that the optimal control scales as
[see (15)].

C. Stability of the Incoherence Solution

To investigate linear asymptotic stability of the incoherence
solution , we consider the linear initial value
problem (22), (23).

The analysis is carried out in the Fourier coordinates. Using
the diagonal representation (26) the linear evolution equation is
given by

We have two cases to consider:
1) : is a triangular matrix and the solution is

given in closed-form

The only function in that satisfies

is the zero function. We thus have

(29)

i.e., as .
2) : We denote and

. In the following we assume
(solution for negative values of can be obtained

as the complex conjugate).
In the Fourier coordinates, the linear evolution equation
is
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whose solution is given by

(30)

(31)

Substituting (30) in (31), and denoting

we arrive at the fixed-point equation

The linear initial value problem thus entails analysis of
this fixed-point equation for all with .

We describe the analysis with the aid of Example 1 where
. In this case,

and for . So, we need consider only the har-
monic whose solution is given by the fixed-point equation

(32)

where

(33)

is a linear operator and
its Laplace transform is denoted as , where is the
Laplace transform variable. The transform is given by

The induced operator norm for is given by

(34)

where denotes the imaginary axis.
For well-posedness, we require is a contraction, i.e.,

. The proof of the following Lemma ap-
pears in the Appendix VII-E.

Lemma 4.2: The linear operator
as defined by (33) is a contraction if and only if

the eigenvalues of the characteristic equation (27) are not on the
imaginary axis.

In Example 1, we saw that there is a critical value of
above which the eigenvalues are not on the imaginary

axis. For such values of , we have the following well-posed-
ness conclusion for the linear initial value problem. The proof
appears in the Appendix VII-F.

Theorem 4.3: Consider the linear initial value problem (22),
(23) with . Suppose

, so the roots of the characteristic equation (27) are not on
the imaginary axis. Then

1) Existence and uniqueness. A unique solution exists in
and is given by

where is a unique solution of the fixed-point
equation (32), and

2) Stability. As , , i.e., the incoher-
ence solution is linearly asymptotically stable.

Remark 2: The linear analysis provides for a game theoretic
generalization of the linear stability analysis that first appeared
for the Kuramoto model in [19]. Technically, the main differ-
ence here is due to the forward–backward nature of the coupled
PDE model. This yields spectra for the linear problem that is
symmetric about the imaginary axis. As a result, stability cannot
be deduced directly in terms of the real part of the spectra alone
(as in [19]). The stability analysis instead requires one to show
contraction properties of the fixed-point equation (32). A sim-
ilar construction also appears in [2].

Remark 3: It is worthwhile to note that the zero noise limit
(as ) leads to a singular problem. Although the analysis
techniques of this paper are no longer relevant to the analysis of
the problem, it is an important open question on whether
the phase transition phenomena occur also for the limiting case?
Similar singular problems also arise in many important applica-
tion areas in mathematical physics. We refer the reader to the
review paper [24] for a discussion of the analysis techniques
and open problems for the coupled oscillator models.

D. Bifurcation Analysis

The spectral analysis suggests the possibility of a bifurcation
leading to periodic solutions below the critical value
(see Fig. 2). In this section, we describe a bifurcation result for
the homogeneous population, under which there is a single fre-
quency:

Assumption : The density is given by
, i.e., the population is homogeneous with a single frequency

for .
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For the homogeneous population, we denote the solution of
the coupled nonlinear PDEs (14a)–(14c) as ,
where dependence on is suppressed because there is only a
single frequency .

The existence result is based on the presence of a certain sym-
metry group: With a spatially invariant cost function, the non-
linear PDEs (14a)–(14c) are equivariant with respect to the spa-
tial symmetry group :

for

In PDEs with spatial symmetry, bifurcated periodic
solutions are known to arise as traveling waves (see [25]) and
we assume an ansatz:

(35)

where denotes the wave speed. We note that the argument
on the right hand-side is evaluated mod here and also

in the remainder of this paper.
The study of traveling wave solutions is based on the fol-

lowing nonlinear eigenvalue problem:

(36)

(37)

The eigenvalue problem is important on account of the fol-
lowing Lemma. The proof appears in the Appendix VII-G.

Lemma 4.4: Consider a homogeneous population with fre-
quency . Suppose is a solution of the nonlinear
eigenvalue problem (36), (37). Then a traveling wave solution
of the coupled nonlinear PDEs (14a)–(14c) is given by

(38)

with wave speed and is the average cost. Con-
versely, a traveling wave solution of (14a)–(14c) with
wave-speed is of the form (38), where is a
solution of (36), (37).

In the following we describe solutions of the nonlinear eigen-
value problem (36), (37). We denote , the
space of twice continuously differentiable real-valued periodic
functions on , and ,

, and . For any fixed , we are interested in
obtaining solutions such that
and .

For the nonlinear eigenvalue problem, we define the incoher-
ence solution

About the incoherence solution, the linearization of (36) is given
by

(39)

with and satisfies the integral constraint .
The spectrum of the linear operator is summa-

rized in the following:
Theorem 4.5: Consider the linear eigenvalue problem

. The spectrum consists of eigenvalues
for The

eigenspace for the th eigenvalue is given by
.

As the parameter varies, the potential bifurcation points
are where an eigenvalue crosses zero. The th such bifurcation
point is given by . Recall that denotes
the th Fourier coefficient of the cost function [see (21)].

Consider now the Example 1 with
. In this case, and

the first bifurcation point is the critical
point at which the incoherence solution loses stability [see
(28)].

We state the bifurcation result next. The proof appears in the
Appendix VII-H.

Theorem 4.6: Consider the nonlinear eigenvalue problem
(36), (37) with cost function .
Let denote the incoherence solution. Then from

bifurcates a branch of non-constant
solutions of (36), (37). More precisely, there exists a
neighborhood of , functions ,
and a family of non-constant solutions of (36), (37) in
such that

1 ) and , and
as ;

2 ) the amplitude of tends to zero as .

Remark 4: The Lyapunov–Schmidt perturbation method was
used to obtain an asymptotic formula for the non-constant bifur-
cating solution branch. For the cost

as in Example 1, the solution is given by an asymptotic
formula in the small “amplitude” parameter :

where , and is an arbitrary phase
in . Fig. 3 depicts the bifurcation diagram for the average
cost as a function of the bifurcation parameter . For com-
parison, we also depict the numerical solution of the nonlinear
eigenvalue problem that is obtained using the continuation soft-
ware AUTO [26]. The details of the calculations are omitted on
account of space.

Using Lemma 4.4, we also have an existence result for trav-
eling wave solutions of the form (38) for the coupled nonlinear
PDEs (14a)–(14c).

Corollary 4.1: Consider the coupled nonlinear PDE
(14a)–(14c) with cost function

and homogeneous frequency . Let de-
note the incoherence solution. Then from
bifurcates a branch of traveling wave solutions

with wave-speed
, where are the non-constant solutions as described

in Theorem 4.6 and Remark 4.
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Fig. 3. (a) Bifurcation diagram for the average cost as a function of parameter ��
�
�. (b) The solution � ��� for � � �� �� � �����.

Fig. 4. Numerical results. (a) Bifurcation diagram: the average cost as a function of ��
�
�. (b) Relative value function for � � ��, and the population density �

for a particular value of �. As � varies, the solution rotates along the circle ��� �		 with a constant wave speed 1.

V. NUMERICAL RESULTS

We present here numerically obtained solutions of the cou-
pled nonlinear PDEs (14a)–(14c) with heterogeneous frequen-
cies, and cost function as
in Example 1. We fix and which gives

. The computations that follow are based on a
waveform relaxation algorithm, whose details can be found in
the conference version of this paper [1].

In numerical experiments, the uniform distribution
on the interval is approximated

by a uniform distribution on three discrete frequencies
. The value of is sufficiently small so that

the numerical results are very similar to those obtained using
a finer discretization of . The PDEs are discretized along the

coordinate using the method of Fourier collocation, with 64
collocation points in the interval .

A. Average Cost Bifurcation Diagram

Fig. 4(a) depicts the bifurcation diagram for the average cost
as a function of the bifurcation parameter .

For , the average cost was found to be
, which is consistent with the incoherence solution

of Section II-D. For the average cost is reduced, and
for such the value of depends upon the frequency

. Its minimal value is attained uniquely when , which is
the mean frequency under .

B. Value Functions, Control, and Density Evolution

The relative value function and probability density
were computed for a range of values of .

The incoherence solution was obtained for ;
the algorithm was very slow to converge as was reduced to
values near .

Fig. 4(b) depicts the relative value function as a function of
obtained for , and for a particular value of

. Experiments revealed that the relative value function and the

Fig. 5. Comparison of the control obtained from solving (14a)–(14c) and the
Kuramoto model.

solution to the FPK equation arise as a traveling wave solution.
In particular, the solution has the form

Moreover, the wave speed was equal to , independent of
, which coincides with the mean frequency with respect to the

density .
Recall the control law (15) is

, which depends upon the
frequency . The control laws obtained for a fixed and
several values of are depicted in Fig. 5 in relation to the
population density. Note that the control is zero when ,
and lies at its mean value (equal to in this figure, for the
particular value of chosen).

The control law that gives rise to the Kuramoto oscillator is de-
fined by . Given
the previous numerical results using , it is reasonable to
conjecture that as tends to infinity this can be approximated by

, for aphase variable and a
gain that is proportional to . This is because in the synchrony
state, the individualoscillators rotatewithacommonfrequency1.
That is, for some .Fig.5showsthat
the optimal control law is in fact “close” to when , , and

are chosen appropriately. A detailed comparison between the
game theoretic and Kuramoto control laws appears in [27].
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VI. CONCLUSION

This paper aggregates concepts and techniques from non-
linear dynamical systems, stochastic control, game theory, and
statistical mechanics to provide new tools for understanding
complex interconnected systems, and new bridges with prior re-
search. The key messages are as follows.

1) Distributed control laws are tractable for a class of large
population dynamic games with separable cost struc-
tures. This conclusion is based on an approximation
of the complex stochastic system using a deterministic
PDE model, similar to the mean-field approximation
that is central to the study of interacting particle systems.

2) The rich theory surrounding the classical Kuramoto
model can be extended to the dynamic game setting
introduced here to explain phase transitions in these
systems. In particular, methods from bifurcation theory
can be adopted to analyze multiple equilibria and their
stability properties.

The future work will focus on applications of proposed
models to problems in neuroscience: in particular, on devel-
opment of adaptation algorithms for “learning” approximately
optimal control laws [27]. Relevance of such architectures to
established learning paradigms (e.g., long-term potentiation
(LTP) that underlies synaptic plasticity [5]) in neuroscience
will be investigated.

Another possible direction is further analysis of the solutions
of the coupled PDE model: in particular, investigation of sta-
bility and possible bifurcation of the time-periodic synchrony
solution. Non-periodic solutions, if they exist, of the coupled
PDE model will invite further research on -Nash optimality of
a general class of solutions.

APPENDIX

A. Proof of Proposition 2.1

The proof of 1) is standard, even in this nonstandard setting
in which varies arbitrarily with time. For any input we define
the stochastic process

This is a martingale under the Markov policy (9), and a sub-
martingale under any other input. In fact, under (9) we have

While, for any other input this is an inequality. The Dambis–Du-
bins–Schwarz Theorem (given as Theorem 4.6 of [28]) implies
that there is a Brownian motion such that the following holds
for all

where . The uniform bound
imposed on implies that , as ,
with probability one under (9). This establishes average-cost
optimality under the boundedness assumptions on and its
derivatives.

B. Proof of Proposition 3.4

We denote by the solution to the SDE (3), obtained
using the oblivious control (15). Denote

. Prop. 3.3 implies that the Law of
Large Numbers holds: For each there exists a limit ,
depending only on and such that

(40)

A limit also holds for the averaged cost function:

(41)

which depends only on and . Our goal is to demonstrate
that vanishes as .

Letting denote the invariant distribution for the skeleton
chain with , we have the representations

(42)

(43)

Each of the expectations in (42) is conditional on the frequen-
cies .

To identify the limit of as we first
consider the average in (42) in the simpler situation in which

is fixed: We denote

where the expectation is independent of the feedback law
(recall that are mutually independent since
we have assumed (15)) and independent initial conditions [see
Assumption (A1)]. We then have

where the first identity follows from the LLN for the i.i.d. se-
quence of frequencies, and the second equality is the definition
of . Moreover, under the assumption that is continuous, the
family of functions on the left-hand side is equicontinuous on

. It follows that the convergence is uniform:

(44)

Returning to (42) and (43), we obtain the desired conclusion:
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This establishes convergence with probability one.
To establish the rate of convergence in mean square (19) we

consider (42) and (43) from a different perspective. For fixed ,
the random variables
are i.i.d. with zero mean. They are also uniformly bounded by

(twice the maximum of over and ). Consequently,

This implies the absolute bound,
.

C. Proof of Theorem 3.5

We first prove the result for the case where the th os-
cillator control is of the state-feedback form

where the function
is continuous.

Using the definition (17) of the average cost

(45)

Similarly,

(46)

Combining (45) and (46)

(47)

where the first inequality is due to (20). The result follows by
using the estimate shown in Proposition 3.4.

We now consider the case where the th oscillator uses any
admissible policy, that is not necessarily periodic state-feed-
back. The result in this case follows from using (47) together
with 3) in Prop. 3.2. Since, the optimal policy for th oscillator,

, is itself a continuous
periodic state-feedback, we have using (47):

With any admissible control,
and the estimate follows for the gen-

eral case.

D. Proof of Theorem 4.1

A is in the spectrum of if the inverse

does not exist as a bounded linear operator
on .

1) Continuous spectrum: We provide a proof of contin-
uous spectrum only for . The proof for
is conceptually similar but some of the calculations are
a bit more involved. We consider the equation

where , . Explicitly, this gives

Formally the inverse, if it exists, is given by

(48)

(49)

The proof that is 1-1 for all is now straight-
forward. If then in using (48)
and if additionally then in
using (49).
Using the formula for the inverse, the inverse operator
is bounded if and only if . If

for some , then
for and the inverse
in (48) is not bounded. The

converse also follows similarly.
Finally, the range of is dense in : e.g.,
the space of functions with , is
a dense subset.
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2) Discrete spectrum: For each , let de-
note the eigenvector corresponding to an eigenvalue .
We assume , the set contained in continuous
spectrum. We have

(50)

(51)

We formally obtain from (51):

and on substituting this into (50):

(52)
The solution because , i.e.,

for all values of . Denote
which

is a constant independent of . This gives
. Substituting

this into (52) yields the characteristic equation for :

(53)
For , the eigenvalue is complex conju-
gate .

E. Proof of Lemma 4.2

Comparison of the characteristic equation (27) and the in-
duced norm (34) reveal that there is an eigenvalue on
the imaginary axis if and only if

It immediately follows that if then there is no
eigenvalue on the imaginary axis. The converse is true because

is a continuous non-positive function of
, and furthermore its value is zero for .

F. Proof of Theorem 4.3

We consider the Fourier representation (24) of the so-
lution. For , the Fourier coordinates ,

as shown in (29). For , the
Fourier coordinate is a solution of the fixed-point
equation (32):

If the roots of the characteristic equation are not on the imag-
inary axis, then is a contraction (using Lemma 4.2) and
there exists a unique solution

and using (30)

G. Proof of Lemma 4.4

For the traveling wave solution [see ansatz (35)], we assume
wave speed . This implies that the left-hand side of
the FPK and the HJB PDEs

(54)

We denote and using (54), the FPK equa-
tion (14b) is given by

(55)

where is the constant of integration. Now,
where is periodic. So, . Integrating both sides
of (55) over , we have

, i.e., and

(56)

Using (54), the HJB equation (14a) is given by

(57)

where . We introduce the Hopf–Cole
transformation coordinate as

(58)

to simplify the HJB equation (57) to
.

Finally, using (56) and (58), we obtain
. This gives , where

we have dropped the constant of integration because is defined
only up to a constant. We thus obtain the eigenvalue problem ex-
pressed only in terms of with the constraint that

because is a density.
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H. Proof of Theorem 4.6

The proof follows closely the Hopf bifurcation theorem using
the method of Lyapunov–Schmidt; cf. [25]. We outline below
the main steps where some of the calculations from the proof of
the Hopf bifurcation will be assumed here.

1) Symmetry: The nonlinear operator is equivariant
with respect to the spatial symmetry group :

for

Note that the rotation symmetry arises because
the convolution kernel is spatially invariant, and re-
flection symmetry is because is assumed to be an
even function (see Assumption (A4) in Section IV).
The -equivariance allows us to look for solutions
with respect to even (or odd) functions . In partic-
ular, denote and
similarly for . Then by equivariance,

.
2) Linear analysis: About the incoherence solution , the

linearization is given by (39). We consider the restric-
tion of the linear operator to the space of even func-
tions . The eigenvalues are still given by

for . The eigenspace
for the th eigenvalue is now one-dimensional,
and is given by . We consider the eigen-
value with eigenspace

. The eigenvalue for the critical pa-
rameter value .
It is easily verified that the operator is self-adjoint
with respect to the standard inner product

where are assumed to be periodic
functions in domain of the operator. The operator is
self-adjoint because the convolution kernel is spa-
tially invariant and even.

3) Integral constraint: Suppose is any solution
of the nonlinear eigenvalue problem (36). Integrate over

to obtain

As a result, the constraint (37) can
be replaced by an equivalent constraint:

(59)

4) Lyapunov-Schmidt reduction: We consider
and denote . We denote

where . Because is self-adjoint,
the range of is given by

. We consider a direct-sum decomposition
where

, and similarly . By expressing
where and defining a

projection operator by ,
we express the operator equation as

(60)

(61)

Now, is invertible and using im-
plicit function theorem, we have a unique solution

of (61) in some local neighborhood of
. Substituting this solution

in (60), we obtain a scalar equation

(62)
and the constraint gives another scalar equation

(63)

Note by construction there exists a trivial solution
and for all

and in particular for . Our objective then is to
obtain nontrivial solutions of (62) and (63) in terms of
the three unknowns .

5) Scalar equation (62): The implicit solution of
follows using standard Hopf bifurca-

tion calculations; cf. [25]. In particular, symmetry
implies a representation
and a direct calculation shows that

By using implicit function theorem, we obtain a unique
solution of the scalar equation (62) in
some local neighborhood of .

6) Scalar equation (63): By substituting
to directly evaluate

using (59), we obtain a representation
and direct calculation shows

By using implicit function theorem again, we obtain a
unique solution of the scalar equation (63) in
some local neighborhood of .
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